Battery Selection for Different Microgrids

Romina Arcamone Garcia
Market Manager – Renewable Energy and Backup Power
Trojan Battery Company
rarcamone@trojanbattery.com
Topics

- Key considerations to plan a microgrid system
- Microgrids case studies:
 - EarthSpark/Zero Base in Haiti
 - GENSA/Hemeva in Colombia
- Key considerations to select a battery type for a microgrid.
- Typical charging behavior of a solar-diesel hybrid system.
Haiti Microgrid: EarthSpark International/ZeroBase

Town-sized, Solar-diesel hybrid grid is the first of its kind in Haiti. Smart grid serves residential and commercial customers, including agricultural processing facilities. 430 households and businesses. Town of Les Anglais

System components:
- Hybrid system: 90KW solar panel
- Inverter/chargers: Princeton Power Systems
- 400kwh battery capacity (152 Trojan VRLA 12V 200AH).
- Battery bank Voltage: 480V
- Emergency generator
- Grid: Medium-voltage line for future increase in consumption
- Funds: USAID Powering Agriculture Grant. The $1.1 million in grant funding will enable EarthSpark to expand the Microgrid and assist agribusinesses with upgrading to efficient electric mills to modernize local processing for rice, sorghum, coffee, and corn.
- Installed: 15 May 2015
Prepayment system by SparkMeter. It enables customers to know the status of their use and recharge their account with prepaid credits from a local energy seller.

2012—first pre-pay Microgrid the grid enabled the **14 pioneer customers** to light their homes, charge their phones and listen to music for an average US$1.50/month.

In October 2013, EarthSpark expanded grid coverage to a total of **54 customers** including a school and several local businesses. New smart meter.

April 26, 2015, EarthSpark expanded service to **430 households** and businesses, which represent most of Les Anglais downtown area.
Haiti, Microgrid: EarthSpark International/ZeroBase
Colombia, 4 Microgrids: GENSA/Hemeva

The 4 microgrids were funded by the government to increase the coverage and satisfy the demand of energy in the “not interconnected areas”.

The users had access to electricity, powered by diesel, only for 4 hours before the hybrid systems were installed.

Location: Acanci, towns: San Francisco-Triganá (293 households), Chugandí (40 households), Caleta (45 households), Aguas Blancas (28 households).

Each household has a meter and pay a monthly invoice to the existent utility company.
Colombia, 4 Microgrids: GENSA/Hemeva

Systems configurations:

<table>
<thead>
<tr>
<th></th>
<th>San Francisco</th>
<th>Chugandi</th>
<th>Caletas</th>
<th>Aguas Blancas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Consumption</td>
<td>818kwh/day</td>
<td>99Kwh/d</td>
<td>99kwh/d</td>
<td>45Kwh/day</td>
</tr>
<tr>
<td>Solar Pv</td>
<td>126 Kwp (60% of the demand)</td>
<td>21Kwp (80% of the demand)</td>
<td>21Kwp (80% of the demand)</td>
<td>15Kwp (100% of the demand)</td>
</tr>
<tr>
<td>Inverter/charger</td>
<td>SMA Sunny Island</td>
<td>SMA Sunny Island</td>
<td>SMA Sunny Island</td>
<td>SMA Sunny Island</td>
</tr>
</tbody>
</table>
Colombia, 4 Microgrids: GENSA/Hemeva
Colombia, 4 Microgrids: GENSA/Hemeva
Key considerations to plan a Microgrid system

The following steps need to be taken into account to plan a microgrid in order to ensure the sustainability of the project.

- Feasibility study based on economics, physical infrastructure and community objectives: population density, ability to pay for energy, etc.
- Governmental support to set up a utility/concession.
- Load-demand management
- Planning typical load demand growth
- Energy efficiency
- Payment method
- Community participation
- Clear organization scheme to operate and maintain the system
- Find Partners to operate the system, to install the system, etc.
Key considerations to select a battery type for Microgrids

An analysis of the economics of the project, the batteries’ technical characteristics, the existent infrastructure and the logistics.

- Capital budget.
- Life of the battery and other features such as ability to perform at partial state of charge
- Maintenance level: minimize maintenance when local staff are not trained electricians mainly when you are working with High-Voltage systems.
- Space limitation: using a container for the batteries vs building a house for them
- Transportation issues to remote areas: how to transport heavy batteries?

Batteries improve the reliability of Microgrids; reduce fuel consumption, cost of fuel transportation and maintenance cost of diesel generators.
Key considerations to select a battery type for Microgrids

<table>
<thead>
<tr>
<th></th>
<th>Space limitation</th>
<th>Maintenance</th>
<th>Transportation</th>
<th>Life of the battery in RE systems (IEC 61427)</th>
<th>Partial state of charge (PSOC) applications</th>
<th>Initial Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoblock GEL/Reliant AGM</td>
<td>Good fit for Container’s solution</td>
<td>No requires maintenance</td>
<td>Lighter weight</td>
<td>3-5 years</td>
<td>NA</td>
<td>Medium</td>
</tr>
<tr>
<td>Premium Line - Flooded</td>
<td>Mostly used in a built infrastructure or a well ventilated container</td>
<td>Requires watering</td>
<td>Lighter weight</td>
<td>8-9 years</td>
<td>With Smart Carbon for PSOC</td>
<td>Medium</td>
</tr>
<tr>
<td>Industrial Line - Flooded</td>
<td>Mostly used in a built infrastructure</td>
<td>Requires watering</td>
<td>Heavy weight</td>
<td>17 years</td>
<td>With Smart Carbon for PSOC</td>
<td>High</td>
</tr>
</tbody>
</table>

© 2015 Trojan Battery Company / CONFIDENTIAL
A Focus on Innovation

Key Innovations in batteries for Renewable Energy & Backup Power

AGM Reliant™ Line with C-Max Technology™

- Trojan’s Reliant™ Line of U.S.-made Absorbed Glass Mat batteries are the only true deep-cycle AGM battery on the market today. Reliant is engineered with an advanced technology feature set that provides outstanding sustained performance and total energy output.

Flooded Premium Line & Industrial Line with Smart Carbon™

- Trojan’s renewable energy Industrial and Premium with Smart Carbon™ Technology batteries are optimized for maximum cycle life when operating in partial states of charge for extended periods of time. Smart Carbon helps to increase the life of the batteries over 15% under PSOC conditions.

Alpha Plus® Paste

- Proprietary, high-density paste formulation engineered to deliver outstanding battery performance. Sustained battery performance over a longer period of time.

Maxguard® Separator

- Creates a more robust battery with increased protection against failures caused by separator degradation.

T2 Technology™

- T2 metal agent delivers maximum operating performance with more sustained capacity and higher total accumulated ampere-hours.
Typical charging behavior of solar diesel hybrid: Battery State of Charge

In the rainy season, May to September, batteries are mostly in PSOC
Primary Loads and PV Production vs Battery State of Charge

- Battery SOC down to 50-40%
- At 20% SOC Genset starts
- Low PV production
Primary Loads and PV Production vs Battery State of Charge and Diesel Generator

GENSET charges batteries up to 80% SOC
Conclusions

- Follow the best practices to plan a Microgrid.
- Select the battery technology that fits your project.
- Trojan batteries with Smart Carbon for Partial State of Charge deliver an increased performance in Renewable Energy applications.
Renewable Energy, Hybrid Systems & Backup Power

Markets

- **OFF-GRID REMOTE POWER**
 - Off-Grid Residential
 - Solar Home Systems
 - Rural Community Buildings
 - Micro-Grids
 - Solar Street Lighting

- **INDUSTRIAL MARKETS**
 - Telecom Networks
 - Oil and Gas
 - Communications
 - Security
 - Monitoring

- **GRID BACKUP**
 - Emergency Backup
 - Inverter Backup

Product Families

- **INDUSTRIAL**
- **PREMIUM**
- **SIGNATURE**
- **GEL**
- **AGM**

© 2015 Trojan Battery. Company Confidential.
Headquartered in California with 4 USA manufacturing facilities in the USA & global distribution & offices

Sales presence in 120+ countries globally

© 2015 Trojan Battery Company
Thank you for your attention!

Romina Arcamone Garcia
Trojan Battery Market Manager
Renewable Energy & Backup Power
RArcamone@trojanbattery.com
Phone: +1 562 236 3182