Storage Solutions in Developing Countries

A Case Study on the Market Potential for Battery Storage in Tanzania
1. Energy supply in Tanzania
2. Battery storage technologies
3. Fields of application for battery storage
4. Market potential & Outlook
Energy supply in Tanzania

Status Quo in Tanzania

- **Frequent power outages:** 3-10 times per month for 3-5 hours
- Power capacity insufficient to meet a steadily increasing demand
- Unreliable power supply is stated as one out of three largest obstacles for doing business in Tanzania
- Industry suffers production downtimes and needs to backup with expensive diesel power generation

Storage technologies as a cost competitive alternative?
Energy supply in Tanzania

- **Generation**
 - Ca. 1.5 GW installed capacity
 - Electricity mix: Gas and oil (71%), biomass (28%), hydro (1%)

- **Grid**
 - 14% of population grid-connected
 - Grid coverage only in northern, central and coastal regions

- **Demand**
 - Growing by 11.7% p.a.
 - Huge gap between supply and demand leads to frequent power outages
Energy supply in Tanzania

Back-up power supply:

- Diesel generators most commonly used back-up power source (>54% of companies)
- High Diesel prices up to 1.20 Euro/liter

High costs for diesel power generation
30-43 ct/kWh
vs.
National Grid price
3-12 ct/kWh

Analysis of the cost competitiveness of storage technologies for back-up power supply

Figure: Regional diesel cap prices
Source: Own illustration according to EWURA (2015) and Szabo et al. (2011)
Agenda

1. Energy supply in Tanzania
2. Battery storage technologies
3. Fields of application for battery storage
4. Market potential & Outlook
Battery storage technologies

Comparison of technical characteristics of lead-acid and lithium-ion batteries

<table>
<thead>
<tr>
<th>Technical parameter</th>
<th>Lead-acid batteries (VRLA)</th>
<th>Lithium-ion batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy density (Wh/kg)</td>
<td>20 – 45</td>
<td>100 – 200</td>
</tr>
<tr>
<td>Power density (W/kg)</td>
<td>100 – 200</td>
<td>200 – 4000</td>
</tr>
<tr>
<td>Lifetime (years)</td>
<td>3 – 10</td>
<td>10 – 15</td>
</tr>
<tr>
<td>Cycles (at 100 % DoD)</td>
<td>200 – 470</td>
<td>3000 - 5000</td>
</tr>
<tr>
<td>Max. depth of discharge</td>
<td>~ 50 %</td>
<td>~ 80 %</td>
</tr>
<tr>
<td>Self-discharge (at 20° C)</td>
<td>< 5 % per month</td>
<td>< 5 % per month</td>
</tr>
<tr>
<td>Roundtrip efficiency</td>
<td>60 – 85 %</td>
<td>90-95 %</td>
</tr>
<tr>
<td>Capital expenditures<sub>2013</sub> (EUR/kWh)</td>
<td>250 - 500</td>
<td>800 - 1600</td>
</tr>
</tbody>
</table>

- Cost advantage and maturity
- Lighter and longer lifetime
- Applicable for regularly occurring long-lasting outages
- Suitable for frequent outages and weak grid stability

Facilitator: Stefanie Werler | BSW Off-grid Forum | 11.06.2015
Agenda

1. Energy supply in Tanzania
2. Battery storage technologies
3. Fields of application for battery storage
4. Market potential & Outlook
Fields of application for battery storage

- **Residential sector:** households, villages
- **Commercial sector:** Service, agriculture, small industries
- **Tourism sector:** grid-connected hotels, small lodges
- **Telecom sector:** grid-connected and off-grid towers
- **Health care and administration:** hospitals and public buildings
Fields of application for battery storage

An excel tool was developed to assess the economic attractiveness of lead-acid and lithium-ion batteries

Input parameters:
- Electricity consumption
- Load curve (evening/midday peak)
- Frequency and duration of power outages
- Battery type and profile

Results:
- Economic comparison of lead-acid batteries, lithium-ion batteries, and diesel genset
- Project cost debt-financed/equity-financed
- Energy demand curve and power outages
- Sensitivity analysis: diesel fuel price, interest rate, battery CAPEX
Market potential & Outlook

Commercial sector: Service, agriculture, small industries

- Unreliable electricity supply major obstacle for business
- High diesel fuel costs and low interest rates are most favourable for cost-effectiveness of batteries
- Lithium-ion batteries suitable for customers with frequent outages and a weak grid stability,
- Lead-acid batteries can be applied for regularly occurring long-lasting outages

<table>
<thead>
<tr>
<th></th>
<th>Access to finance</th>
<th>Electricity</th>
<th>Tax rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small enterprise (5-19)</td>
<td>42,1</td>
<td>24,3</td>
<td>7,6</td>
</tr>
<tr>
<td>Medium enterprise (20-99)</td>
<td>25,1</td>
<td>24,0</td>
<td>10,7</td>
</tr>
<tr>
<td>Large enterprise (100+)</td>
<td>19,8</td>
<td>45,4</td>
<td>9,3</td>
</tr>
</tbody>
</table>

Figure: Three biggest obstacles for doing business in Tanzania (Number of employees in brackets)
Market potential & Outlook

Commercial sector: Service, agriculture, small industries

- A coffee farm selected as case study
- Stable demand of around **135 kW per hour** due to constant use of energy intensive machinery (water pumping)
- Blackouts occur daily between 5 and 7pm

Conservative assumptions:
- Grid power costs 0.1 EUR/kWh
- Diesel fuel costs 1 EUR/l
- Interest rate of 15 % is applied
- No solar PV capacity installed

![Load profile and power outages for agricultural company case study](source: Own illustration – load profile was made available by OneShore Energy GmbH)
Market potential & Outlook

Commercial sector: Service, agriculture, small industries

- Approx. 9% electricity losses due to power outages
- Necessary storage capacities to compensate blackouts: 456 kWh Li-ion, 238 kWh L/A and 210 kW diesel generator

<table>
<thead>
<tr>
<th>Battery back-up systems</th>
<th>Lead-acid</th>
<th>Lithium-ion</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity</td>
<td>455.9</td>
<td>238.4</td>
<td>kWh</td>
</tr>
<tr>
<td>Installed power</td>
<td>152.0</td>
<td>238.4</td>
<td>kW</td>
</tr>
<tr>
<td>Total Investment</td>
<td>159,581.0</td>
<td>238,427.4</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual CAPEX</td>
<td>35,562.6</td>
<td>43,985.3</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual OPEX fix</td>
<td>3,191.6</td>
<td>2,384.3</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual OPEX var.</td>
<td>0.0</td>
<td>0.0</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual charging costs</td>
<td>12,641.9</td>
<td>11,346.2</td>
<td>EUR</td>
</tr>
<tr>
<td>Total annual costs</td>
<td>51,396.2</td>
<td>57,715.7</td>
<td>EUR</td>
</tr>
<tr>
<td>Annuity factor</td>
<td>0.22</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>LCOE battery back-up energy</td>
<td>0.50</td>
<td>0.56</td>
<td>EUR/kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel generator</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity</td>
<td>210.0</td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Total Investment</td>
<td>63,000.0</td>
<td></td>
<td>EUR</td>
</tr>
<tr>
<td>Annual CAPEX</td>
<td>10,774.1</td>
<td></td>
<td>EUR</td>
</tr>
<tr>
<td>Annual OPEX fix</td>
<td>210.0</td>
<td></td>
<td>EUR</td>
</tr>
<tr>
<td>Annual OPEX var.</td>
<td>5,120.0</td>
<td></td>
<td>EUR</td>
</tr>
<tr>
<td>Annual fuel costs</td>
<td>40,959.8</td>
<td></td>
<td>EUR</td>
</tr>
<tr>
<td>Total annual costs</td>
<td>57,063.8</td>
<td></td>
<td>EUR</td>
</tr>
<tr>
<td>Annuity factor</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCOE diesel back-up energy</td>
<td>0.56</td>
<td></td>
<td>EUR/kWh</td>
</tr>
</tbody>
</table>
Market potential & Outlook

Tourism sector: grid-connected hotels, small lodges

- Contribution to Tanzanian GDP: 12,1%
- Average hotels consume between 500 and 1,500 kWh per day
- Almost all hotels have back-up power generation facilities or are solely operating on diesel generators
- Large potential for storage systems

Case study resort – assumptions:
- Daily Consumption 1 MWh
- Grid power costs 0.1 EUR/kWh
- Diesel fuel costs 1.20 EUR/l (remote lodge)
- Interest rate of 8 % is applied (access to international capital market)
- Solar PV system with a peak capacity of 35 kWp
Market potential & Outlook

Tourism sector: grid-connected hotels, small lodges

Battery storage systems vs. Diesel generator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lead-acid battery</th>
<th>Lithium-ion battery</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity</td>
<td>208.5</td>
<td>69.5</td>
<td>kWh</td>
</tr>
<tr>
<td>Installed power</td>
<td>69.5</td>
<td>69.5</td>
<td>kW</td>
</tr>
<tr>
<td>Total Investment</td>
<td>72,991.7</td>
<td>69,515.9</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual CAPEX</td>
<td>16,266.2</td>
<td>12,824.3</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual OPEX fix</td>
<td>1,459.8</td>
<td>695.2</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual OPEX var.</td>
<td>0.0</td>
<td>0.0</td>
<td>EUR</td>
</tr>
<tr>
<td>Annual charging costs</td>
<td>5,950.4</td>
<td>5,340.5</td>
<td>EUR</td>
</tr>
<tr>
<td>Total annual costs</td>
<td>23,676.5</td>
<td>18,860.0</td>
<td>EUR</td>
</tr>
<tr>
<td>Annuity factor</td>
<td>0.22</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>LCOE battery back-up energy</td>
<td>0.42</td>
<td>0.33</td>
<td>EUR/kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Diesel generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity</td>
<td>104.3</td>
</tr>
<tr>
<td>Total Investment</td>
<td>31,282.1</td>
</tr>
<tr>
<td>Annual CAPEX</td>
<td>5,349.8</td>
</tr>
<tr>
<td>Annual OPEX fix</td>
<td>104.3</td>
</tr>
<tr>
<td>Annual OPEX var.</td>
<td>2,833.4</td>
</tr>
<tr>
<td>Annual fuel costs</td>
<td>23,761.5</td>
</tr>
<tr>
<td>Annual fuel consumed</td>
<td>19,801.3</td>
</tr>
<tr>
<td>Total annual costs</td>
<td>32,049.0</td>
</tr>
<tr>
<td>Annuity factor</td>
<td>0.17</td>
</tr>
<tr>
<td>LCOE diesel back-up energy</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Market potential & Outlook

Telecom sector: grid-connected and off-grid towers

- 4,600 telecom towers in Tanzania with annual growth rate of 19% p.a.
- Two thirds grid-connected and one third off-grid
- The majority of towers face power outages for more than 6 hours per day
- High costs for purchase and transport of diesel

➢ Telecom towers bear a high market potential for batteries due to regular blackouts as well as high costs for energy costs back-up power supply

Figure: Electricity supply costs for on-grid and off-grid operating telecom towers

Source: GSMA (2015c)
Market potential & Outlook

Health care and administration: hospitals and public buildings

- Reliable electricity supply essential for health infrastructure
- **Largely underdeveloped** health system; in remote areas health care is provided by small dispensaries or health centres
- Only **50% of all health facilities** are provided with access to **electricity** and 30% with access to reliable electricity supply (power outages less than 2 hours)

- Back-up energy supply for health care required

Figure: Health care infrastructure in Tanzania
Source: National electrification prospectus (REA 2014)
Market potential & Outlook

- Most attractive: off-grid and weak grid regions
- Tourism sector and commercial sector most promising
- Lithium-ion batteries most suitable for occurrence of highly fluctuating power outages which require quick charging and discharging reactions
- Lead-acid batteries are attractive for longer steady back-up power supply (less cost per kWh storage capacity)
- The combination of battery systems with PVs further reduces back-up power costs
- The most influencing factors on the economic viability of battery systems for on-grid back-up power supply are the applied interest rate and the local diesel price
Market potential & Outlook

How to overcome the hurdles for market entry?
Market potential & Outlook

Challenges

Technical
- Missing quality standards for battery products
- Technical know-how of local distributors

Financial
- Difficult access to local or international financing
- High upfront investments
- Short term price sensitivity of end-customer
- Import taxes on batteries

Projects
- Missing pilot projects for new technologies
- High consulting and marketing effort
- Diverse customer structure
- Price sensitivity of customers
- Strong international competition with low cost products

Approach

Technical
- Introduction of standards
- Training of local distributors and electricians

Financial
- International financing programs and guarantees
- Micro-financing for small projects
- Education on economic advantages of batteries
- Combination of RE products and batteries to save import taxes

Projects
- „Centralized“ project development
- Collaborative pilot projects
Thank you for your attention!

Contact:

Stefanie Werler
Project Development Programme (PDP)
renewables – made in Germany initiative
E: stefanie.werler@giz.de
T: 030-338424-389

For further information and to download the full study visit:

website.renewables-made-in-germany.com
www.giz.de/projektentwicklungsprogramm